Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-2-hydroxybenzamide

Qing-Hua Wang, ${ }^{\text {a* }}$ Guo-Cong Guo, ${ }^{\text {b }}$ Li-Zhen Cai, ${ }^{\text {b }}$ Hong-Xu Guo, ${ }^{a}$ Ming-Li Chen ${ }^{\text {a }}$ and Wen Weng ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou 363000, People's Republic of China, and ${ }^{\text {b }}$ State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China Correspondence e-mail: wqh_1974@yahoo.com.cn

Received 27 September 2007; accepted 15 November 2007

Key indicators: single-crystal X-ray study; $T=292 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.059 ; w R$ factor $=0.172$; data-to-parameter ratio $=13.7$.

The title compound, $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$, is a derivative of salicylic acid and is linked into dimers by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The amide unit [$-\mathrm{CO}-\mathrm{NH}-$] is not involved in any intermolecular hydrogen bonds. The salicylic phenyl ring forms a dihedral angle of $60.5(9)^{\circ}$ relate to the pyrazoline ring, while the diheral angle between the pyrazoline ring and the phenyl ring directly attached to it is $53.2(6)^{\circ}$.

Related literature

For related literature, see: Bhatt \& Topol (2003); Eikelboom et al. (2005); Hankey \& Eikelboom (2004); Jain et al. (1999); Matsumoto et al. (1997); Mu et al. (2003); Tanaka et al. (2004); Urpí et al. (2003); Wen et al. (2006).

Experimental

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \\
& M_{r}=323.35 \\
& \text { Triclinic, } P \overline{1} \\
& a=8.081(3) \AA \\
& b=8.833(3) \AA \\
& c=12.279(4) \AA \\
& \alpha=80.37(3)^{\circ} \\
& \beta=73.68(2)^{\circ}
\end{aligned}
$$

Data collection
RIGAKU AFC7 diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.974, T_{\text {max }}=0.999$
3314 measured reflections
3035 independent reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.172$
$S=1.04$
3035 reflections

1652 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.046$
3035 standard reflections every 6315 reflections intensity decay: 0.5%

Table 1
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
${\text { O1-H1A } \cdots \mathrm{O}^{\mathrm{i}}}^{\mathrm{H}}$	0.98	1.62	$2.592(4)$	177
N1-H1B $\cdots \mathrm{O} 1$	0.80	2.01	$2.665(4)$	139
${\text { C3-H3 } \cdots \mathrm{O}^{\mathrm{i}}}^{\mathrm{H}}$	0.93	2.56	$3.230(5)$	130
C6-H6A $\cdots \mathrm{O} 2^{2}$	0.93	2.43	$2.764(5)$	101

Symmetry code: (i) $-x+1,-y+2,-z+1$.
Data collection: WinAFC (Rigaku, 2002); cell refinement: WinAFC; data reduction: CrystalStructure (Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Financial support was provided by the Fujian Science \& Technology Committee (No. 2006F5067) and China National Science Foundation (No. 20705031).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2030).

References

Bhatt, D. L. \& Topol, E. J. (2003). Nat. Rev. Drug Discov. 2, 15-28.
Eikelboom, J., Feldman, M., Shamir, R. \& Michelson, A. D. (2005). MedGenMed, 7, 76-85.
Hankey, G. J. \& Eikelboom, J. W. (2004). Br. Med. J. 328, 477-479.
Jain, S. C., Sinha, J., Bhagat, S., Babu, B. R., Bali, S. \& Errington, W. (1999). Acta Cryst. C55, 1826-1829.
Matsumoto, N., Tsuchida, T., Sawa, R., Iinuma, H., Nakamura, H., Naganawa, H., Sawa, T. \& Takeuchi, T. (1997). J. Antibiot. 50, 912-915.

Mu, F., Hamel, E., Lee, D. J., Pryor, D. E. \& Cushman, M. (2003). J. Med. Chem. 46, 1670-1676.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Rigaku (2002). WinAFC (Version 3.0) and CrystalStructure (Version 3.10). Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tanaka, R., Horio, K., Haramura, M., Tanaka, A. \& Hirayama, N. (2004). Estestrvoispyt, 20, x171-x173.
Urpí, L., Jiménez, K., Solans, X., Rodríguez-Galán, A. \& Puiggalí, J. (2003). Acta Cryst. C59, o24-o26.
Wen, Y.-H., Yu, Y.-Q., Zhang, K., Li, X.-M. \& Zhang, S.-S. (2006). Acta Cryst. E62, o3782-o3783.

supplementary materials

N-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-2-hydroxybenzamide

Q.-H. Wang, G.-C. Guo, L.-Z. Cai, H.-X. Guo, M.-L. Chen and W. Weng

Comment

Aspirin is an important drug used to treat mild to moderate pain, and also to reduce fever or inflammation. It is sometimes used to treat or prevent heart attacks, strokes, and chest pain. Aspirin reduces the odds of serious atherothrombotic vascular events and death by about one quarter in a broad category of high risk patients. However, it still fails to prevent most serious vascular events in patients with symptomatic atherothrombosis. Recurrent vascular events in patients taking aspirin ("aspirin treatment failures") have many possible causes, and aspirin resistance has emerged as an additional contender (Bhatt \& Topol, 2003; Hankey \& Eikelboom, 2004; Eikelboom et al., 2005). As part of our programme of synthesizing new derivatives of aspirin, the title compound, (I), was synthesized by the reaction between aspirin and 4-aminoantipyrine.

The molecular structure of (I) with the atom labelling scheme is shown in Fig. 1. A s expected, the acetyl group of 2-acetylsalicylic acid residue has been eliminated through hydrolysis. The amide unit [-CO-NH-] is essentially coplanar with the salicylic phenyl ring [dihedral angle $=5.1(5)^{\circ}$], similiar to other salicylic amide compounds (Matsumoto et al., 1997; Mu et al., 2003; Wen et al., 2006). The salicylic phenyl ring forms a dihedral angle of $60.5(9)^{\circ}$ with the five-membered pyrazoline ring, while the dihedral angle between the pyrazoline ring and the phenyl ring directly attached to it is 53.2 (6) ${ }^{\circ}$. This observation was in agreement with other amide compounds containing the pyrazoline group (Jain et al., 1999; Tanaka et al., 2004)

The $\mathrm{C} 7=\mathrm{O} 2$ bond distance $[1.226(4) \AA$] and $\mathrm{C} 7-\mathrm{N} 1$ bond distance $[1.356$ (4) \AA] are typical. It is noteworthy that as it is surrounded by bulky groups, the amide unit [$-\mathrm{CO}-\mathrm{NH}-]$ did not make any intermolecular hydrogen bonds which is uncommon among amide compounds (Urpí et al., 2003). The intramolecular $\mathrm{N} 1 — \mathrm{H} 1 \mathrm{~B} \cdots \mathrm{O} 1$ and $\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A} \cdots \mathrm{O} 2$ hydrogen bonds stabilize the molecular conformation. The intermolecular O1-H1A $\cdots \mathrm{O} 3$ hydrogen bonds link the two molecules in the unit cell into dimers [Fig. 2 and Table 2], and the dimer is further stabilized by the weak $\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A} \cdots \mathrm{O} 3$ hydrogen bonds. No other significant intermolecular distances could be detected among the dimers.

Experimental

30 mmol of aspirin and 3 ml of thionyl chloride were added to a 50 ml flask, then 2 drops of pyridine were added, then the mixture was heated at 70 C for 70 min . The excess thionyl chloride was removed under reduced pressure and the residue was dissolved in dichloromethane. The above solution was added dropwise to a solution of 30 mmol 4 -aminoantipyrine in 10 ml of dichloromethane placed in an icebath. The mixture was stirred for 1 h , then 3 ml of triethylamine was added, and the mixture was again stirred for 3 h . The dichloromethane was removed by vacuum and 10 ml propanol was added, the solution was then treated with 10 ml of 6 M NaOH , the organic layer was acidified slowly with 6 MHCl until a large amount of yellow precipitate appeared. The precipitate was collected and washed with large amount of water. Single crystals of (I) were grown by slow evaporation in air of a mixed solution of dichloromethane/ethanol.

supplementary materials

Refinement

All methyl H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms ($\mathrm{C}-\mathrm{H}$ $=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C})$), each group was allowed to rotate freely about its $\mathrm{C}-\mathrm{C}$ bond. The hydroxyl and amide H atoms were positioned theoretically with the $\mathrm{O}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ bond distance refined. The other hydrogen atoms were located theoretically and refined on riding mode $\left(U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})\right)$.

Figures

N-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-2-hydroxybenzamide

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$
$M_{r}=323.35$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=8.081$ (3) \AA
$b=8.833$ (3) \AA
$c=12.279(4) \AA$
$\alpha=80.37(3)^{\circ}$
$\beta=73.68$ (2) ${ }^{\circ}$
$\gamma=77.41(3)^{\circ}$
$V=815.8(5) \AA^{3}$
$Z=2$
$F_{000}=340$
$D_{\mathrm{x}}=1.316 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 20 reflections
$\theta=12-30^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Plate, pale yellow
$0.40 \times 0.20 \times 0.05 \mathrm{~mm}$

Data collection

RIGAKU AFC7
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=292(2) \mathrm{K}$

$$
\begin{aligned}
& R_{\mathrm{int}}=0.046 \\
& \theta_{\max }=25.5^{\circ} \\
& \theta_{\min }=1.7^{\circ} \\
& h=-2 \rightarrow 9
\end{aligned}
$$

ω scans

Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.974, T_{\text {max }}=0.999$
3314 measured reflections
3035 independent reflections
1652 reflections with $I>2 \sigma(I)$
$k=-10 \rightarrow 10$
$l=-14 \rightarrow 14$

3035 standard reflections
every 6315 reflections
intensity decay: ?

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.172$
$S=1.04$
3035 reflections
222 parameters
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0763 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.25 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.30$ e \AA^{-3}

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
O1	$0.4576(3)$	$0.8879(3)$	$0.6450(2)$	$0.0449(7)$
H1A	0.505	0.958	0.677	0.067^{*}
O2	$0.2766(4)$	$0.5236(3)$	$0.5621(2)$	$0.0509(7)$
O3	$0.4224(3)$	$0.9187(3)$	$0.27299(19)$	$0.0360(6)$
N1	$0.3037(4)$	$0.7766(3)$	$0.5176(2)$	$0.0364(7)$
H1B	0.3440	0.845	0.5304	0.044^{*}
N2	$-0.0060(4)$	$0.8561(3)$	$0.3461(2)$	$0.0385(7)$
N3	$0.1437(4)$	$0.8972(3)$	$0.2665(2)$	$0.0343(7)$
C1	$0.4237(4)$	$0.6208(4)$	$0.6708(3)$	$0.0319(8)$
C2	$0.4799(4)$	$0.7415(4)$	$0.7031(3)$	$0.0335(8)$
C3	$0.5601(5)$	$0.7145(4)$	$0.7929(3)$	$0.0427(9)$

H3A	0.5964	0.7959	0.8138	0.051*
C4	0.5857 (6)	0.5671 (5)	0.8509 (3)	0.0534 (11)
H4A	0.6400	0.5491	0.9105	0.064*
C5	0.5308 (6)	0.4454 (5)	0.8207 (3)	0.0538 (11)
H5A	0.5471	0.3460	0.8601	0.065*
C6	0.4521 (5)	0.4735 (4)	0.7320 (3)	0.0451 (10)
H6A	0.4163	0.3913	0.7118	0.054*
C7	0.3312 (4)	0.6347 (4)	0.5786 (3)	0.0340 (8)
C8	-0.0865 (5)	0.7305 (5)	0.5453 (3)	0.0514 (10)
H8A	-0.0464	0.7222	0.6129	0.077*
H8B	-0.0970	0.6290	0.5328	0.077*
H8C	-0.1987	0.7983	0.5544	0.077*
C9	0.0415 (4)	0.7958 (4)	0.4454 (3)	0.0357 (8)
C10	0.2097 (4)	0.8112 (4)	0.4337 (3)	0.0330 (8)
C11	0.2777 (4)	0.8774 (4)	0.3207 (3)	0.0298 (8)
C12	-0.1205 (5)	0.7886 (5)	0.3012 (4)	0.0573 (12)
H12A	-0.2250	0.7753	0.3601	0.086*
H12B	-0.0603	0.6891	0.2765	0.086*
H12C	-0.1512	0.8573	0.2378	0.086*
C13	0.1241 (5)	1.0148 (4)	0.1731 (3)	0.0364 (9)
C14	-0.0168 (5)	1.1366 (4)	0.1865 (3)	0.0473 (10)
H14A	-0.1029	1.1401	0.2551	0.057*
C15	-0.0294 (6)	1.2534 (5)	0.0975 (4)	0.0619 (12)
H15A	-0.1244	1.3356	0.1062	0.074*
C16	0.0973 (6)	1.2488 (5)	-0.0035 (3)	0.0592 (12)
H16A	0.0889	1.3284	-0.0628	0.071*
C17	0.2373 (5)	1.1263 (5)	-0.0174 (3)	0.0533 (11)
H17A	0.3235	1.1235	-0.0860	0.064*
C18	0.2498 (5)	1.0077 (5)	0.0704 (3)	0.0448 (9)
H18A	0.3423	0.9234	0.0603	0.054*

Atomic displacement parameters (\hat{A}^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0595(17)$	$0.0373(14)$	$0.0491(15)$	$-0.0200(13)$	$-0.0298(13)$	$0.0060(12)$
O2	$0.0665(19)$	$0.0377(15)$	$0.0614(18)$	$-0.0179(13)$	$-0.0309(15)$	$-0.0050(13)$
O3	$0.0328(14)$	$0.0405(14)$	$0.0377(13)$	$-0.0137(11)$	$-0.0085(11)$	$-0.0041(11)$
N1	$0.0454(18)$	$0.0354(16)$	$0.0347(16)$	$-0.0147(14)$	$-0.0166(14)$	$-0.0007(13)$
N2	$0.0326(17)$	$0.0479(18)$	$0.0386(17)$	$-0.0179(14)$	$-0.0097(14)$	$0.0004(14)$
N3	$0.0313(16)$	$0.0413(17)$	$0.0322(16)$	$-0.0132(14)$	$-0.0092(13)$	$0.0015(13)$
C1	$0.0309(19)$	$0.0331(19)$	$0.0286(18)$	$-0.0025(15)$	$-0.0037(15)$	$-0.0057(15)$
C2	$0.0325(19)$	$0.0336(19)$	$0.0327(19)$	$-0.0090(16)$	$-0.0051(16)$	$-0.0004(15)$
C3	$0.054(2)$	$0.045(2)$	$0.034(2)$	$-0.0176(19)$	$-0.0163(18)$	$0.0001(17)$
C4	$0.069(3)$	$0.057(3)$	$0.042(2)$	$-0.014(2)$	$-0.029(2)$	$0.005(2)$
C5	$0.080(3)$	$0.037(2)$	$0.043(2)$	$-0.002(2)$	$-0.024(2)$	$0.0053(18)$
C6	$0.056(2)$	$0.033(2)$	$0.046(2)$	$-0.0074(18)$	$-0.012(2)$	$-0.0038(17)$
C7	$0.0314(19)$	$0.036(2)$	$0.0354(19)$	$-0.0077(16)$	$-0.0079(16)$	$-0.0055(16)$
C8	$0.042(2)$	$0.064(3)$	$0.046(2)$	$-0.019(2)$	$-0.0070(19)$	$0.004(2)$

sup-4

supplementary materials

C9	$0.036(2)$	$0.039(2)$	$0.0319(19)$	$-0.0121(17)$	$-0.0067(16)$	$-0.0011(16)$
C10	$0.036(2)$	$0.0337(19)$	$0.0314(19)$	$-0.0096(16)$	$-0.0091(16)$	$-0.0034(15)$
C11	$0.035(2)$	$0.0280(18)$	$0.0305(18)$	$-0.0092(15)$	$-0.0095(16)$	$-0.0064(14)$
C12	$0.054(3)$	$0.069(3)$	$0.063(3)$	$-0.030(2)$	$-0.026(2)$	$-0.001(2)$
C13	$0.038(2)$	$0.044(2)$	$0.0323(19)$	$-0.0102(18)$	$-0.0134(17)$	$-0.0049(16)$
C14	$0.046(2)$	$0.052(2)$	$0.038(2)$	$-0.005(2)$	$-0.0045(18)$	$-0.0041(19)$
C15	$0.064(3)$	$0.054(3)$	$0.053(3)$	$0.009(2)$	$-0.013(2)$	$0.004(2)$
C16	$0.071(3)$	$0.061(3)$	$0.040(2)$	$-0.009(3)$	$-0.018(2)$	$0.011(2)$
C17	$0.053(3)$	$0.069(3)$	$0.034(2)$	$-0.012(2)$	$-0.0085(19)$	$0.002(2)$
C18	$0.040(2)$	$0.058(2)$	$0.032(2)$	$-0.0015(19)$	$-0.0067(17)$	$-0.0056(18)$

Geometric parameters ($\AA,^{\circ}$)

O1-C2	1.369 (4)
O1-H1A	0.9823
O2-C7	1.226 (4)
O3-C11	1.254 (4)
N1-C7	1.356 (4)
N1-C10	1.403 (4)
N1-H1B	0.8034
N2-C9	1.370 (4)
N2-N3	1.399 (4)
N2-C12	1.467 (4)
N3-C11	1.389 (4)
N3-C13	1.432 (4)
C1-C6	1.396 (5)
C1-C2	1.398 (5)
C1-C7	1.499 (5)
C2-C3	1.392 (5)
C3-C4	1.379 (5)
C3-H3A	0.9300
C4-C5	1.386 (5)
C4-H4A	0.9300
C5-C6	1.372 (5)
C5-H5A	0.9300
C2-O1-H1A	109.5
C7-N1-C10	124.3 (3)
C7-N1-H1B	117.9
C10-N1-H1B	117.9
C9-N2-N3	107.0 (3)
C9-N2-C12	123.2 (3)
N3-N2-C12	115.9 (3)
C11-N3-N2	109.0 (2)
C11-N3-C13	123.4 (3)
N2-N3-C13	119.3 (3)
C6- $\mathrm{C} 1-\mathrm{C} 2$	117.2 (3)
C6-C1-C7	116.5 (3)
C2-C1-C7	126.3 (3)
O1-C2-C3	119.5 (3)

C6-H6A	0.9300
C8-C9	1.489 (5)
C8-H8A	0.9600
C8-H8B	0.9600
C8-H8C	0.9600
C9-C10	1.360 (5)
C10-C11	1.417 (4)
C12-H12A	0.9600
C12-H12B	0.9600
C12-H12C	0.9600
C13-C14	1.379 (5)
C13-C18	1.381 (5)
C14-C15	1.382 (5)
C14-H14A	0.9300
C15-C16	1.368 (6)
C15-H15A	0.9300
C16-C17	1.378 (6)
C16-H16A	0.9300
C17-C18	1.381 (5)
C17-H17A	0.9300
C18-H18A	0.9300
H8A-C8- H 8 C	109.5
H8B-C8-H8C	109.5
C10-C9-N2	109.4 (3)
C10-C9-C8	130.3 (3)
N2-C9-C8	120.3 (3)
C9-C10-N1	127.8 (3)
C9-C10-C11	108.7 (3)
N1-C10-C11	123.4 (3)
O3-C11-N3	123.1 (3)
O3-C11-C10	131.3 (3)
N3-C11-C10	105.5 (3)
N2-C12-H12A	109.5
N2-C12-H12B	109.5
$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	109.5

supplementary materials

$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	$119.7(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$120.8(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$120.0(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.0
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.0
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$120.3(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	119.8
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	119.8
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$119.1(4)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	120.4
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	120.4
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$122.6(4)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	118.7
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	118.7
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{N} 1$	$121.4(3)$
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 1$	$121.2(3)$
N1-C7-C1	$117.3(3)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	109.5
C9-C8-H8B	109.5
H8A-C8-H8B	109.5
C9-C8-H8C	109.5

Hydrogen-bond geometry ($A,{ }^{\circ}$)
$D — \mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{~A} \cdots{ }^{\mathrm{O}} 3^{\mathrm{i}}$
N1—H1B…O1
C3-H3A $\cdots{ }^{\text {O }}{ }^{\text {i }}$
C6-H6A \cdots O2
Symmetry codes: (i) $-x+1,-y+2,-z+1$.

$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
0.98	1.62	$2.592(4)$	177
0.80	2.01	$2.665(4)$	139
0.93	2.56	$3.230(5)$	130
0.93	2.43	$2.764(5)$	101

Fig. 1

Fig. 2

